3x^2+4=9x^2-32

Simple and best practice solution for 3x^2+4=9x^2-32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4=9x^2-32 equation:



3x^2+4=9x^2-32
We move all terms to the left:
3x^2+4-(9x^2-32)=0
We get rid of parentheses
3x^2-9x^2+32+4=0
We add all the numbers together, and all the variables
-6x^2+36=0
a = -6; b = 0; c = +36;
Δ = b2-4ac
Δ = 02-4·(-6)·36
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*-6}=\frac{0-12\sqrt{6}}{-12} =-\frac{12\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*-6}=\frac{0+12\sqrt{6}}{-12} =\frac{12\sqrt{6}}{-12} =\frac{\sqrt{6}}{-1} $

See similar equations:

| 9x–4=8x+8 | | 23+3(x-2)=4 | | x-8÷6=45 | | 8b-3=2b+7 | | -6x–21=-9x+6 | | 0.64^x=0.1 | | 0.1=0.64^x | | x+2÷4+9-x÷3=x÷2 | | V=20x+160 | | x-5÷6=4 | | 3^06x-3^06-36729,71=0 | | 3E+06x-3E+06-36729,71=0 | | 3(x+4)^2+5=113 | | 3(x+4)+5=113 | | 3672971=3E+06x-3E+06 | | 4(x+17)=6(x-3) | | x+7/4=14-x/3 | | -4x^2+48x+144=0 | | -4x^2+48x-144=0 | | 2x-(-11x+8)=18 | | -8(4x-3)=-8 | | 12x-46=23x-24 | | 5x+(-x+8)=16 | | 9(-x-4)=-9 | | 4x(2x-8)=5(1+2x) | | 15(2x-1)=10(2x+5 | | x3+3=30 | | 180x+128=0 | | 7+2t=9-2t | | 10x2+10=100 | | 3x+2=8x+37 | | 3x/4+12=-36 |

Equations solver categories